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We investigate the site percolation transition in two strongly correlated systems in three dimensions: the
massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential
U= �J /2���x,y����x�−��y��2, x ,y�Z3, J�0, and ��x��R, a scalar height variable, and define occupation
variables �h�x�=1 �0� for ��x��h ��h�. The probability p of a site being occupied is then a function of h. In
the voter model we consider a stationary measure in which each site is either occupied or empty, with
probability p. In both cases the truncated pair correlation of the occupation variables, G�x−y�, decays asymp-
totically as �x−y�−1. Using some Monte Carlo simulation methods and finite-size scaling we find accurate
values of pc as well as the critical exponents for these systems. The latter are different from that of independent
percolation in d=3, as expected from the work of Weinrib and Halperin �WH� for the percolation transition of
systems with G�r�	r−a �Phys. Rev. B 27, 413 �1983��. In particular the correlation length exponent � is very
close to the predicted value of 2, supporting the conjecture by WH that �= 2

a is exact.
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I. INTRODUCTION

A translationally invariant ergodic system of point par-
ticles on a lattice, say Zd, in which each site is occupied with
probability p, 0� p�1, is said to percolate when it contains
an infinite cluster of occupied sites, connected by nearest
neighbor bonds. This event satisfies the zero-one law, i.e., the
probability that the system percolates is either zero or one
�1,2�. For the case in which the sites are independent the
transition from the nonpercolating state for p� pc and the
percolating one for p� pc is one of the simplest examples of
critical phenomena. The probability that a given site, say the
origin, is connected to infinity, i.e., is part of the infinite
cluster, is zero for p� pc and strictly positive for p� pc �1,2�.
Much is known rigorously, and even more from computer
simulations and renormalization group calculations, about
the nature of the percolation transition in the independent
case. In particular it is known rigorously that pc is strictly
greater than zero and less than one for d�2 with pc�d� a
decreasing function of d, etc. We also know explicitly or
have bounds for some of the various exponents associated
with the divergence of different quantities, e.g., the mean
finite cluster size, when p→pc. We even know exactly the
scaling limit of the shape of the critical cluster on the trian-
gular lattice �3�.

It is generally believed that the critical properties, e.g.,
exponents, for independent percolation, but not pc, are uni-
versal: they do not depend on the particular lattice but only
on the dimensionality of the problem. The exponents are also
believed not to be changed when one considers systems for
which the occupation probabilities for different sites are not
independent, as long as the correlations between occupied
sites decay rapidly, say exponentially �4�.

Less is known about the percolation transition when there
are long-range correlations between occupied sites, e.g.,

when the correlations decay as a power law. Such power law
decays occur in many physical systems and the nature of the
percolation transition in such systems has come up recently
in the study of two-dimensional turbulence �5� and of porous
media, such as gels �6�.

In a seminal work Weinrib and Halperin �4,7� argued that
the critical exponents of the percolation transition should de-
pend only on the decay of the pair correlation G�r� in such
systems. In particular for G�r�	r−a the transition should be
in a universality class that depends only on a and d. Their
analysis was based on considering the variance of the par-
ticle density in a region of volume 	d, where 	 is the perco-
lation correlation length which diverges as p↗pc. They
found that if a�d these correlations are relevant if a�−2
�0. Here � is the critical exponent which describes the di-
vergence of the percolation correlation length 	, e.g., the
average radius of gyration of the clusters in the independent
percolation problem as p↗pc, i.e., 	�p�	�pc− p�−�. Weinrib
and Halperin �WH� argued that systems that satisfy the
above criteria belong to a new universality class for which
the percolation correlation length exponent is �long=2/a
�4,7�. They also checked this using a renormalization group
double expansion in 
=6−d and in �=4−a. While the com-
putations of WH were done only in the one-loop approxima-
tion the exponent �long was conjectured to be exact �4,7�.

As pointed out by WH their results are consistent with
those based on renormalization group ideas, in both real and
momentum space, on the percolation of like-pointing Ising
type spins at the critical point �see �7� and references there
in�. There have also been some numerical tests of the WH
predictions. For d=2 Prakash et al. �8� have carried out
Monte Carlo simulations for percolation on artificially gen-
erated power law correlated occupation probabilities on Z2.
This study confirmed the predictions of Weinrib and Halp-
erin. The only direct check of the WH prediction in d=3 we
are aware of is in �6� where the authors introduced a bond
percolation model in Z3, called Pacman percolation. They
argued that the pair correlation for their model decays as r−a,
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with a close to 1, and obtained critical exponents which are
consistent with WH, but since a was not known exactly the
results are not fully conclusive.

In this paper we study the percolation transition in three
dimensions for two systems in which the long-range correla-
tions arise naturally from the microscopic dynamics: the
massless harmonic crystal and the voter model on Z3. Both
of these systems are known rigorously to have G�r�	r−1.
They also have other similarities but are intrisically quite
different. The existence and nature of the percolation transi-
tion in these systems are of interest in their own right. Using
Monte Carlo simulations and finite-size scaling we find the
pc for both models. We also find that both models have the
same critical exponents as expected from the WH predictions
of a long-range percolation universality class.

For the massless harmonic crystal in Zd we define site x to
be occupied if the scalar displacement field ��x� is greater
than some preassigned value h and empty if ��x��h. Perco-
lation then corresponds to the existence of an infinite level
set contour for ��x��h. The existence of percolation thresh-
old, i.e., 0� pc�1, was proven by Bricmont, Lebowitz, and
Maes �9� for d=3. There are, however, no previous calcula-
tions �known to us� concerning the actual value of pc or of
the critical exponents for this system. One expects intuitively
that the pc will be smaller than pc for independent percola-
tion �cf. �8��, but we know of no proof for this. Similarly a
proof that pc�0 for the harmonic crystal in d�3, or for the
anharmonic crystal in d�3 is still an open problem �10�. For
d�2, ��x� is for any h, either plus or minus infinity, with
probability 1, when the size of the system goes to infinity.
Thus either all sites are occupied or all sites are empty.

The voter model, often used for modeling various socio-
logical and biological phenomena, is a lattice system in
which a site x is occupied or empty according to whether the
“voter” living there belongs to party A or B. Voters change
their party affiliations according to a well-defined stochastic
dynamics �11�. The stationary state of this model is not
known explicitly but many of its properties are known ex-
actly. In particular it has many features in common with the
harmonic crystal. As for the harmonic crystal, the stationary
state of the voter model is trivial in d�2; all sites occupied
or all sites empty. On the other hand any p is possible on Zd

for d�3, where the truncated pair correlation decays, as it
does for the harmonic crystal, as r−1. No proof of the exis-
tence of a pc�0 is known for this system, i.e., the system
could in principle percolate for arbitrarily small p. For ex-
amples of systems where pc�
 for any 
�0 see �12�.

The outline of the rest of the paper is as follows. In Sec. II
we present the simulation methods and results the massless
harmonic crystal. In particular we find pc=0.16±0.01. In
Sec. III we study the voter model. We present an efficient
algorithm for simulating this model and report the results
from its implementation. We find in particular that pc
=0.10±0.01 compared with pc
0.16 obtained in �13� using
a less reliable method. We conclude the paper with a brief
discussion of some open problems.

II. THE HARMONIC CRYSTAL

A. Formulation

Let x�Zd designate the sites of a d-dimensional simple
cubic lattice and ��x� be the scalar displacement field at site

x. The interaction potential in a box � with specified bound-
ary conditions �BCs�, e.g., ��x�=0 for x on the boundary of
�, has the form

U =
1

2
J �

�x,y�
���x� − ��y��2 +

1

2
M2 � ��x�2

�
1

2�
x,y

��x�C−1�x,y���y� , �1�

where J�0 and M �0, �x ,y� indicates nearest neighbor
pairs, and �x−y�=1, on Zd. The sum is over all sites in � with
the specified bcs. The Gibbs equilibrium distribution of the
���x�
 at a temperature 
−1, ��

M(���x�
)=ZM,�
−1 =e−
U, is then

Gaussian with a covariance matrix 
C which is well defined
for M �0.

The infinite-volume-limit Gibbs measure �M obtained
when �↗Zd is, for M �0, translation invariant, with
���x��=0 and is independent of the boundary conditions
�14�. When M→0, �M does not exist for d�2 �14�. This is
due to the fact that the fluctuations of the field, e.g., ���x�2�,
become unbounded for these dimensions. However, for d
�3 the Gibbs measure � obtained as the limit of �M when
M→0 is well defined. �It is the same as the infinite-volume
limit of the measure in a box with M =0 and prescribed
boundary values ��x�=0.� In this limit the pair correlations
between different sites have the long-distance behavior
1 /rd−2, r= �x−y�, for d�2 �14�.

Following �9� we define the occupation variable �h�x�

�h�x� = �1 if ��x� � h ,

0 if ��x� � h ,
� �2�

and let p= ��h�x���M, where the average is over the Gibbs
measure �M. We can also define a new measure �̂M on the
occupation variables �h�x�=0,1 by a projection of �M. All
expectations involving a function of the occupation variables
can be computed directly from �̂M. The correlations between
the occupation variables have the same asymptotic decay
properties as those of the field variables �,

��h�x��h�y���̂M − p2 	
e−�x−y�/	M

�x − y�d−2 for d � 2, �3�

where 	M 	M−1 and the averages are with respect to �̂M �or
�M�. In the limit M→0 the measure �̂ has a pair correlation
that decays as r2−d for d�2. We note that �̂ is not Gibbsian
for any summable potential �cf. �15��.

B. Results

Simulating the harmonic crystal on finite lattices is easy;
the elements in a discrete Fourier transform of a harmonic
crystal are independently distributed Gaussian random vari-
ables with easily computed variances �16�. We consider the
system on a lattice with periodic boundary conditions and
exclude the zero mode. This is essentially equivalent to fix-
ing ���=0.

There are many methods for obtaining the percolation
threshold using data obtained from simulations on finite sys-
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tems �1�. We used the method employed in �13,17�. For a
cube of linear size L let

�L = ��
j

j2nj� , �4�

where nj is the number of clusters of j sites, defined by the
occupation variables �h�x�, and the average is taken over a
large number of samples obtained from simulation of the
model. We calculate �L for different sizes L and concentra-
tion of occupied sites p defined as in �2�.

One expects �1,17,18� that for large L, and �pc− p��1, �L

should have a finite-size-scaling form,

L−d�L 	 L�/�F„L1/��p − pc�… + �corrections to scaling� ,

�5�

where � is the critical exponent for the divergence as p↗pc
of the second moment of the cluster size distribution, defined
as the limit L→� of �L /Ld. Corrections to scaling should go
to zero for L→�.

For p� pc, for an infinite system the second moment of
the cluster size distribution can be defined by excluding the
infinite cluster. This diverges with a critical exponent �� for
p↘pc. The finite-system analog is �L� /Ld which is defined
similarly to �L /Ld but not including the spanning cluster. �L�
scales as

L−d�L� 	 L��/�F�„L1/��p − pc�… + �corrections to scaling� .

�6�

It is believed that ��=�.
According to finite-size-scaling theory the number of sites

in the largest cluster in a finite system of linear size L, PL�p�,
scales for �p− pc��1 as

PL�p� 	 Ld−
/�G�L1/��p − pc�� + �corrections to scaling�
�7�

�1,18�, where 
 is the critical exponent for the approach to
zero of the fraction of sites belonging to the infinite cluster in
an infinite system as p↘pc. Using the hyper scaling relation
d=2
 /�+� /� we see that Eqs. �5�–�7� lead to the scaling
form �5� being valid for all �p− pc��1 and large L. That is,
on a finite system we do not need to differentiate between
p� pc and p� pc; we may include all the clusters when cal-
culating �L�p�.

Assuming �5� is valid for �p− pc��1 the ratio RL
=�2L /�L should become independent of L, for large L, at p
= pc. Plotting these ratios as a function of p for different sizes
L and looking for the intersection of these different curves
then yields pc. The value of the ratios at the intersection
point of the RL curves should be equal to 2d+�/� giving us a
way to measure � /�. Moreover, we also have

1

�
=

ln�dR2L

dp � dRL

dp
�

ln 2
. �8�

Thus the slopes of these curves should also give �.
In Fig. 1 we present results of the simulation for the mass-

less harmonic crystal on a cubic lattice with periodic bound-

ary conditions. Each �L was averaged over 48 000 samples
except for L=160 where the average is over 2400 samples.
To determine the error bars we have divided the output of the
simulations into ten parts and, assuming that the averages are
Gaussian distributed, we evaluated the variance, which we
used as a measure of the uncertainty. From the intersection of
the curves, after interpolation, we obtain pc=0.16±0.01.
Comparing the slopes of the RL curves for L=80 and 40 we
obtain �=2.1±0.5. From the value of RL at the intersection
point of the curves we obtain � /�=1.8±0.1. We actually
computed �L for the sequences L=10,20,40,80,160 and L
=15,30,60,120. All the simulation results are consistent
with what is plotted in Fig. 1 where we have used only part
of these simulations since the plot is otherwise cluttered.
These values clearly show that our system is in a different
universality class from independent percolation since for the
latter �=0.876±0.001 and � /�=2.045±0.001 �19�.

The above method is good for finding the percolation
threshold and the ratio of critical exponents � /� but clearly
does not give good results for �. To obtain more precise
result for the percolation correlation length exponent we
evaluated the probability that there is a “wrapping cluster,”
i.e., one that wraps around the torus, for different densities p
of occupied sites and different linear sizes L.

For fixed L we denote by pc
ef f the value of the density of

occupied sites for which one-half of the realizations will
have such a wrapping cluster. This should obey the scaling
relation pc

ef f − pc	L−1/� �1�. For sizes between 30 and 100 we
evaluated pc

ef f from simulations in a range between p=0.13
and 0.25 in steps of 0.005. For each such system 24 000
samples were generated. The slope of ln�pc

ef f − pc� versus
ln�L� should give us �. A plot of the results is presented in
Fig. 2. The slope of the fitted straight line is 0.50±0.01
which gives �=2.00±0.04. This is in good agreement with
the theoretical prediction �=2 of Weinrib and Halperin �4�.

We have used the obtained values of pc, � /�, and � to
draw Fig. 3 where we see a good collapse of the data points
to a smooth curve.

We also calculated the ratio of the critical exponents 
 /�.
We did this by finding the fraction of sites that belong to the

FIG. 1. Plot of RL vs p for the d=3 massless harmonic crystal.
We estimate pc=0.16±0.01.
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largest cluster in a system of linear size L, P�pc ,L� /Ld, when
we simulate at the approximate critical density. From �7� we
see that P�pc ,L� /Ld	L−
/�. The result for systems of size
from 40 to 170 averaged over 24 000 samples is presented in
Fig. 4. From the slope of the fitted straight line we obtain

 /�=0.60±0.01. Moreover, the fact that P�pc ,L� follows
well a power law behavior supports our contention that the
true critical value is near pc=0.16±0.01. Observe also that
2
 /�+� /�=3.0±0.2 and thus the hyperscaling relation is
satisfied.

III. THE VOTER MODEL

A. Formulation

Another system whose pair correlations decays like that
of the massless harmonic crystal is the voter model in Zd

�11�.

The voter model is defined through a stochastic time evo-
lution. Each lattice site is occupied by a voter who can have
two possible opinions, say, yes or no. With rate �−1 the voter
at site x adopts the opinion of one of his/her 2d neighbors
chosen at random. More specifically, letting ��x�=0,1, x
�Zd, the time evolution of the voter model is specified by
giving the rate Cv�x ,�� for a change at site x when the con-
figuration is given by �,

Cv�x,�� =
1

��1 −
1

2d
�2��x� − 1� �

�y−x�=1

�2��y� − 1�� ,

where � sets the unit of time.
It is clear that for the voter model on a finite set ��Zd

with periodic or free boundary conditions, there will be only
two possible stationary states: either ��x�=1 or ��x�=0 for
all x��. The same is true for the voter model on an infinite
lattice in one and two dimensions: the only stationary states
are the consensus states. However, for d�3 there are, as for
the massless harmonic crystal, unique stationary states for
every density p of positive spins, p= ���x��. The correlations
in this state decay as

���x���y�� − p2 = p�1 − p�Gd�x − y� ,

where Gd�x� is the probability for a random walker, starting
at x�Zd, to hit the origin before escaping to infinity. It is
well known that Gd�x�	1/ �x�d−2 for d�3, i.e., the pair cor-
relation for the voter model has the same long-range behav-
ior as the massless harmonic crystal.

B. Simulation method

An efficient method to simulate the voter model is to con-
sider a box BL of linear size L with stochastic boundary
conditions, i.e., when a voter looks at the boundary he sees 1
with probability p and 0 with probability 1− p. It is then
possible to show that the distribution of the configuration of
voters in a box BL of size L�L centered inside BL and far
away from the boundary will approach the steady state mea-

FIG. 2. Plot of ln�pc
ef f − pc� vs ln�L�. The slope of the straight

line gives �=2.00±0.04.

FIG. 3. Plot of �LL−d−�/� vs �p− pc�L1/� for the d=3 massless
harmonic crystal for pc=0.16, �=2, and � /�=1.8. We have plotted
data points for L=30,60,120 for p=0.13–0.16 in steps of 0.005
and for L=40,80,160 for p=0.13–0.18 in steps of 0.005.

FIG. 4. Plot of ln�P�pc ,L�� vs ln�L�. The slope of the straight
line gives 
 /�=0.60±0.01.
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sure �restricted to BL� with density p for the voter model
when L→�. In order to sample from the measure for the
voter model inside BL with such stochastic boundary condi-
tions we use the following algorithm. Start a random walk
from each site of BL and let these random walks move inde-
pendently until two of them meet, in which case they coa-
lesce. When a random walk hits the boundary of BL it is
frozen. We continue this until all the random walkers either
coalesce or are frozen. After this is done we independently,
for each frozen walker, assign the value 1 with probability p
and the value 0 with probability 1− p, then assign that same
value to its ancestors, that is, all the random walkers that
have coalesced with it. In this way we assign values 1 or zero
to all the sites in BL. One can prove that in this way we
sample configurations inside BL with the distribution coming
from the voter model in BL with the stochastic boundary
conditions discussed above. The advantage of this way of
simulating is that one is guaranteed that the sampling is from
the steady state measure with these boundary conditions.

C. Results

Using this method of generating configurations inside BL
for different p we looked for a spanning cluster inside BL.
We did simulations for sizes L=10, 15, 20, 25, and 30 with
L=160. The results which are the same for all L in the range
�120, 160� are presented in Fig. 5. If we assume the scaling
form for the spanning probability �1�

�L�p� = F„�p − pc�L1/�
… �9�

then by collapsing the data �Fig. 6� we obtain pc
=0.10±0.01 and �=2±0.2.

To find � /� we measured �L /L3 and we assume the scal-
ing form �5�. Note that in this case we do not have periodic
boundary conditions. Results from the simulation are pre-

sented in Fig. 7. Collapsing the data �Fig. 8� we obtain pc
=0.10±0.01, � /�=1.9±0.2, and �=2±0.2.

Analogous simulation measurements for P�p ,L� gave

 /�=0.6±0.1. As in the case of the massless harmonic crys-
tal the exponents we found satisfy the hyperscaling relation
2
 /�+� /�=d. The exponents for both the massless har-
monic crystal and voter model seem to agree within the error
bars.

D. Comparison of pc with previous simulations

The percolation transition in the d=3 voter model was
first investigated in �13�. This was done by considering vot-
ers who occasionally change their opinions spontaneously,

FIG. 5. Plot of �L vs p for the d=3 voter model. We have
plotted data points for L=10, 15, 20, 25, and 30 from p=0.06 to
p=0.205 in steps of 0.005. Each point is an average over 105

samples. The error bars are not shown since on this scale they are
too small.

FIG. 6. Plot of �L vs �p− pc�L1/� for the d=3 voter model for
pc=0.105 and �=2. We have used the same data that were used to
create Fig. 5.

FIG. 7. Plot of �LL−d vs p for the d=3 voter model. We have
plotted data points for L=10, 15, 20, 25, and 30 from p=0.06 to
p=0.205 in steps of 0.005. Each point is an average over 105

samples. The error bars are not shown since on this scale they are
too small.
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i.e., independently of what their neighbors are doing. They
do this with probability �. In terms of flip rates one has

C�x,�� = �1 − ��Cv�x,�� +
�

�
�1 + �1 − 2p��2��x� − 1�� ,

where 0� p�1 and 0���1 and Cv is the voter model flip
rate. This leads to a stationary state in any periodic box of
size Ld with density of pluses equal to p. As � increases from
0 to 1 we go from the voter model to an independent flip
model. The stationary state of the latter is a product measure
with density p. This model was studied rigorously in �20�
where it was named the noisy voter model.

In �13� the authors used �5�, on simulation results of the
noisy voter model on lattices with periodic boundary condi-
tions, to obtain pc��� for ��0.1. For d=3 they found by
extrapolation pc���	0.16 as �→0.

We have repeated the simulations in �13� for larger lattice
sizes and smaller values of �. We simulated systems with �
as small as 0.01 each with 24 000 “effectively uncorrelated”
samples and sizes up to 80. From our results we can extrapo-
late pc���→0.15 as �→0, a value slightly lower than the
result in �13�. We also observed that, as expected, the critical
exponents for the noisy voter model agree, for the given
range of �, with the critical exponents of independent perco-
lation.

This leaves a significant difference from the result for pc
obtained in the previous section. We believe that the answer
lies in the necessary extrapolation to �=0. Since the autocor-
relation time grows exponentially with �, this means we
have to wait for more and more Monte Carlo steps to get
independent samples. To check this explanation we investi-
gated the percolation transition in the harmonic crystal with a

mass M. This mass acts much like the random flips in the
voter model. For both models the pair correlation decays
exponentially. In the harmonic crystal the characteristic
length scale is 	M =1/M. An easy calculation shows that the
characteristic length scale for the noisy voter model is 	�

=��1−�� /6�. The noisy voter model with the smallest � that
we simulated, �=0.01, thus corresponds to 	� roughly equal
to 4 �the unit distance is the lattice spacing�. In the language
of the massive harmonic crystal this corresponds to M
	0.25. Estimating the percolation threshold of the massless
harmonic crystal by the extrapolation method we used for the
voter model using M �0.25 yields a pc�M�	0.21 when M
→0. This is obviously a large overestimate of pc=0.16
which was obtained by directly simulating the massless har-
monic crystal. This shows that the extrapolation method
greatly overestimates the true pc.

IV. CONCLUDING REMARKS

We have performed Monte Carlo simulations to obtain the
critical percolation density and some critical exponents for
the massless harmonic crystal and the voter model in Z3. We
found a value of pc for the former and using a different
method of simulation for the voter model found a more reli-
able value of pc for this system. The critical exponents for
both models agree within the error bars. This suggests that
both percolation models are in the same universality class
and confirms the theoretical predictions made in �4�. The
result for the correlation length critical exponent �=2 sup-
ports the conjecture by WH that the relation �=2/a is exact.

It is believed that not only the critical exponents but also
the finite-size-scaling functions are universal. While this is
certainly consistent with our simulations we have not
checked this carefully. Such a check would require measur-
ing quantities for the two systems in the same way. This is
not what we have done here as we wanted to use the most
efficient method for each system.

We mention here that there has been much activity in
generalizing the voter model in various ways �21�. Based on
our present work we expect that the nature of the percolation
transition in these models will depend only on the asymptotic
behavior of G�r�. We have, however, not investigated this.
Our simulation method may be extendable to some of these
systems.
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FIG. 8. Plot of �LL−d−�/� vs �p− pc�L1/� for the d=3 voter model
for pc=0.105, �=2, and � /�=1.9. We have used the same data that
were used to create Fig. 7.

VESSELIN I. MARINOV AND JOEL L. LEBOWITZ PHYSICAL REVIEW E 74, 031120 �2006�

031120-6



�1� D. Stauffer and A. Aharony, Introduction to Percolation
Theory, 2nd ed. �Taylor and Francis, New York, 1994�.

�2� G. Grimmet, Percolation, 2nd ed. �Springer-Verlag, Berlin,
1999�.

�3� S. Smirnov, C. R. Acad. Sci., Ser. I: Math. 333, 239 �2001�.
�4� A. Weinrib and B. I. Halperin, Phys. Rev. B 27, 413 �1983�.
�5� D. Bernard, G. Boffetta, A. Celani, and G. Falkovich, Nat.

Phys. 2, 124 �2006�.
�6� T. Abete, A. de Candia, D. Lairez, and A. Coniglio, Phys. Rev.

Lett. 93, 228301 �2004�.
�7� A. Weinrib, Phys. Rev. B 29, 387 �1984�.
�8� S. Prakash, S. Havlin, M. Schwartz, and H. E. Stanley, Phys.

Rev. A 46, R1724 �1992�.
�9� J. Bricmont, J. Lebowitz, and C. Maes, J. Stat. Phys. 48, 1249

�1987�.
�10� G. Giacomin �private communication�.
�11� T. M. Liggett, Interacting Particle Systems �Springer-Verlag,

New York, 1985�.
�12� L. Chayes, J. Lebowitz, and V. Marinov �unpublished�.

�13� J. Lebowitz and H. Saleur, Physica A 138, 194 �1985�.
�14� H.-O. Georgii, Gibbs Measures and Phase Transitions, de

Gruyter Studies in Mathematics Vol. 9 �Walter de Gruyter &
Co., Berlin, 1988�.

�15� A. van Enter, R. Fernandez, and A. Sokal, J. Stat. Phys. 72,
879 �1993�.

�16� S. Sheffield, Gaussian free fields for mathematicians, e-print
math.PR/0312099.

�17� H. Saleur and B. Derrida, J. Phys. �France� 46, 1043 �1985�.
�18� K. Binder and D. W. Heermann, Monte Carlo Simulation in

Statistical Physics: An Introduction �Springer-Verlag, Berlin,
1992�.

�19� H. G. Ballesteros, L. A. Fernandez, V. Martin-Mayor, A. Mu-
noz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A 32, 1
�1999�.

�20� B. Granovsky and N. Madras, Stochastic Proc. Appl. 55, 23
�1995�.

�21� I. Dornic, H. Chate, J. Chave and H. Hinrichsen, Phys. Rev.
Lett. 87, 045701 �2001�.

PERCOLATION IN THE HARMONIC CRYSTAL AND… PHYSICAL REVIEW E 74, 031120 �2006�

031120-7


